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Abstract. We screened 217 bats of at least 20 species from 17 locations in Kenya during July and August of 2006 for
the presence of adenovirus, rhabdovirus, and paramyxovirus nucleic acids using generic reverse transcription polymerase
chain reaction (RT-PCR) and PCR assays. Of 217 bat fecal swabs examined, 4 bats were adenovirus DNA-positive,
11 bats were paramyxovirus RNA-positive, and 2 bats were rhabdovirus RNA-positive. Three bats were coinfected by two
different viruses. By sequence comparison and phylogenetic analysis, the Kenya bat paramyxoviruses and rhabdoviruses
from this study may represent novel viral lineages within their respective families; the Kenya bat adenoviruses could not be
confirmed as novel, because the same region sequences from other known bat adenovirus genomes for comparison were
lacking. Our study adds to previous evidence that bats carry diverse, potentially zoonotic viruses and may be coinfected
with more than one virus.

INTRODUCTION

Over one-half of all known human pathogens originated
from animals, and over 75% of emerging infectious diseases
identified in the last three decades were zoonotic.1 The threat
of veterinary pathogens to human health continues to grow
because of increasing population density and urbanization,
global movement of people and animals, and deforestation
accompanied by increased proximity of human and wildlife
habitats. Recent emerging infectious diseases have been con-
centrated in tropical Africa, Latin America, and Asia, with
outbreaks usually occurring within populations living near
wild animals.1 Identification of animal reservoirs from which
zoonosis may emerge and detection and characterization of
pathogens in these reservoirs will facilitate timely implemen-
tation of control strategies for new zoonotic infections.2

Therefore, pathogen discovery studies in animal reservoirs
represent an integral part of public health surveillance.
Bats have long been known as natural hosts for lyssaviruses,

and more recently, they have been recognized as potential res-
ervoirs for emerging human pathogens, including henipaviruses,
filoviruses, and severe acute respiratory syndrome (SARS)
related coronaviruses.3,4 Novel viruses are documented in bats
every year, which has drawn increasing attention to these mam-
malian reservoirs that are uniquely associated with a variety
of known and potential zoonotic pathogens. In this study, we
report the detection of nucleic acids of adenoviruses, rhabdo-
viruses, and paramyxoviruses in bats from Kenya.

STUDY

Field sampling of bats was implemented in Kenya for zoo-
notic surveillance within the framework of the Global Disease
Detection Program of the Centers for Disease Control and
Prevention. Detailed information on bat capture and handling
is described elsewhere.5 In this study, fecal swabs (N = 217)

collected during July and August of 2006 from apparently
healthy bats representing 21 species in 13 genera from 17
locations within Kenya were screened for the presence of
adenovirus, polyomavirus, rhabdovirus, and paramyxovirus
nucleic acids using generic reverse transcription polymerase
chain reaction (RT-PCR) and PCR assays.6–8 Polyomavirus
detection has been described previously.9 Positive PCR prod-
ucts were purified, sequenced, and analyzed on an ABI Prism
3130 Automated Sequencer (Applied Biosystems, Foster City,
CA). Sequences were aligned with those sequences of known
representatives of the same viral families, and phylogenetic
reconstructions were performed using Bayesian Markov Chain
Monte Carlo analysis implemented in BEAST Program under
theHasegawa-Kishino-Yano (HKY) substitutionmodel.10

Of 217 fecal swabs tested (Table 1), adenovirus DNA was
detected in 4 samples fromChaerephon sp. (N= 2) andOtomops

martiensseni (N = 2); paramyxovirus RNA was detected in
11 samples from Cardioderma cor (N = 1), Chaerephon sp.
(N = 1),O. martiensseni (N = 5), Rousettus aegyptiacus (N = 2),
Miniopterus minor (N = 1), and M. natalensis (N = 1); and
rhabdovirus RNA was detected in 2 samples from Chaerephon
sp. (N = 1) andM. africanus (N = 1). Three bats harbored viruses
from two different viral families. One O. martiensseni bat was
coinfected with a paramyxovirus and a polyomavirus pre-
viously described.9 Another O. martiensseni bat was coinfected
with an adenovirus and a paramyxovirus. One Chaerephon

sp. bat was coinfected with a rhabdovirus and a polyomavirus.9

Additional specimens of lung, kidney, liver, and/or brain tissues
from nine bats that had paramyxovirus RNA-positive fecal
swabs were also tested for paramyxovirus RNA. Four bats
(KY149, KY151, KY166, and KY291) tested positive on kidney
tissues, andone bat (KY159) tested positive onkidney, lung, and
liver tissues. The KY159 bat kidney and lung tissues were
coinfected with two different types of paramyxoviruses. One
sequence was the same as identified in the fecal swab (KY159a),
and the other sequence represented a rubula-related virus
(KY159b). These findings support an assumption for an active
viral infection rather than simple transit of ingested infected
material through the digestive tract of the bat. In addition, posi-
tive identification of paramyxovirus RNA in these tissues may
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stem from infection at these sites or possible viremia. Attempts
to propagate paramyxovirus-positive, adenovirus-positive, and
rhabdovirus-positive tissue samples in cell culture have been
unsuccessful to date. Genome sequencing of paramyxovirus-
positive rectal samples by 454 pyrosequencing failed to amplify
paramyxovirus sequences, probably because of insufficient
load of viral RNA in the sample.
Phylogenetic analysis of four Kenya bat adenoviruses based

on partial hexon gene sequences (630 base pairs) and represen-

tative sequences comprising 47 known adenoviruses (Figure 1)
showed that these viruses grouped together within the Masta-
denovirus genus and were most closely related to canine ade-
novirus types 1 and 2 and bat adenoviruses from China (bat
adenovirus 3 from Myotis ricketti) and Germany (bat adeno-
virus 2 from Pipistrellus pipistrellus).11,12 Interestingly, many
other bat mastadenoviruses recently identified from China,
Hungary, India, Japan, North America, Brazil, and Spain were
also shown to be distantly related to canine adenovirus types 1

Table 1

Positive PCR results per bat species and geographical locations

Bat species/location Number of bats tested Adenovirus Paramyxovirus Rhabdovirus Polyomavirus*

Cardioderma cor
Kisumu 1 1
Panga Yambo cave 10 1
Tsavolite goldmine 3

Chaerephon sp.
Kisumu 13 1 1 5
Moi University 16 1 1 2
Asembo Bay 6

Chaerephon pumilus
Marungu 5
Shimoni cave 1

Coleura afra
Marungu 1
Shimoni cave 1

Eidolon helvum
Vihiga District 9 1

Epomophorus wahlbergi
Nairobi 3

Hipposideros commersoni
Shimoni cave 9 1

Hipposideros ruber
Kakamega cave 2
Makingeny cave 4

Lissonycteris angolensis
Kakamega cave 11 1
Kisumu 1 1

Miniopterus africanus
Chyulu National Park 9 1 1

Miniopterus inflatus
Kakamega cave 10

Miniopterus natalensis
Kitum cave 8 1

Miniopterus minor
Three caves 16 1

Otomops martiensseni
Suswa cave 19 2 5 6

Pipistrellus sp.
Nairobi 1
Kisumu 4

Rhinolophus sp.
Three caves 1
Shimoni cave 1
No information 2

Rhinolophus clivosus
Nairobi 5

Rhinolophus hildebrandtii
Chyulu National Park 4

Rousettus aegyptiacus
Three caves 11 3
Kitum cave 10 1
Makingeny cave 9
Watamu cave 6 1 1

Taphozous nudiventris
Marungu 2

Taphozous hildegarde
Shimoni cave 3

Total 217 4 11 2 23

*See ref. 9.
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Figure 1. Phylogenetic analysis of adenoviruses. The adenovirus phylogenetic tree was generated using the partial hexon gene sequences
(630 nucleotides) from a representative sample comprising 47 known adenoviruses. Viral sequences identified in bats from Kenya are noted by
black circles. The trees are drawn to scale, with branch lengths measured in the number of substitutions per site. The Bayesian posterior
probabilities (> 0.5) are shown at nodes.
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Figure 2. Phylogenetic analysis of rhabdoviruses identified in bats from Kenya. The rhabdovirus phylogenetic tree was generated based on
partial RDRP gene sequences (219 nucleotides) from representative known rhabdoviruses. Viral sequences identified in bats from Kenya are
noted by black circles. The trees are drawn to scale, with branch lengths measured in the number of substitutions per site. The Bayesian posterior
probabilities (> 0.5) are shown at nodes.
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Figure 3. Phylogenetic analysis of paramyxoviruses identified in bats from Kenya. The paramyxoviruses phylogenetic trees were generated
based on (A) amplicon sequences (305 nucleotides) from generic RT-PCR assays of the subgroup Respirovirus-Morbillivirus-Henipavirus,
(B) amplicon sequences (294 nucleotides) from generic RT-PCR assays of the Paramyxovirinae, and (C) amplicon sequences (216 nucleotides)
from generic RT-PCR assays of the subgroup Avulavirus-Rubulavirus from representative known paramyxovirues. Viral sequences identified
in bats from Kenya are noted by black circles. The trees are drawn to scale, with branch lengths measured in the number of substitutions per site.
The Bayesian posterior probabilities (> 0.5) are shown at nodes.
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Figure 3. Continued
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and 2 based on a different region of DNA polymerase
sequences.12–17 These data may suggest that canine adeno-
viruses 1 and 2 and the bat adenoviruses share a common
ancestor. The KY249 and KY339 sequences from Chaerephon
sp. bats were nearly identical (99% nucleotide identity) but
distinct from KY165 and KY166 sequences obtained from
O. martiensseni bats (61–63% nucleotide identity). The KY165
and KY166 sequences shared only 59% nucleotide identity
with each other. These four Kenya bat adenovirus sequences
share 58–66% nucleotide identity with their most closely
related adenoviruses: bat adenoviruses 2 and 3.

Two nearly identical rhabdovirus partial RDRP gene
sequences (KY231 and KY330; 219 nucleotides) were identi-
fied in bats from two different species (M. africanus and
Chaerephon sp.) in different locations. They were divergent
from their near neighbors (about 60–65%% nucleotide iden-
tity by BLAST), for which relevant genetic information
(L gene sequences overlapping our PCR product) is available
in GenBank for comparison (Figure 2).
Twelve paramyxovirus sequences were detected from 11

Kenya bats by three different generic paramyxovirus RT-PCR
assays as described before.7 The KY159 bat was identified

Figure 3. Continued
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as having two different paramyxovirus sequences (KY159a
and KY159b). Seven sequences (KY196, KY291, KY149,
KY151, KY159a, KY162, and KY166) were detected by
both generic RT-PCR assays of the subgroup of Respirovirus-
Morbillivirus-Henipavirus (Figure 3A) and Paramyxovirinae
(Figure 3B), and five sequences were detected by generic RT-
PCR assays of Paramyxovirinae (KY241 and KY248) subgroup
of either Respirovirus-Morbillivirus-Henipavirus (KY283) or
Avulavirus-Rubulavirus (KY227 and KY159b) (Figure 3C).
These 12 paramyxovirus sequences belonged to three different
taxa groups based on partial polymerase gene (L) sequences.
Nine sequences were grouped with Beilong virus, J virus, and
unclassified bat paramyxoviruses within Paramyxovirinae that
were identified in bats from Central and South America, Indian
Ocean islands, Africa, and Europe.18–22 Notably, these nine
sequences formed five distinct lineages (KY196, KY291, KY241,
KY248, KY149-KY151-KY159a-KY162-KY166) with 72–78%
nucleotide identity between each lineage, suggesting five
novel lineages. Sequences within the lineage KY149-KY151-
KY159a-KY162-KY166 shared 97–100% nucleotide identity
with each other. Interestingly, KY196 and KY291 sequences
from the Kenya Miniopterus bats were grouped with sequences
of paramyxoviruses from other insectivorous bats, including
Miniopterus originating from Comoros and Madagascar and a
Hipposiderosgigasbat fromGabon, respectively (Figure3A).19,22

One sequence (KY283) identified in R. aegyptiacus was
grouped with another known bat henipavirus-related virus
identified in a R. aegyptiacus bat from Gabon (72% nucleo-
tide identity). This finding supports the previous suggestion
that pteropodid bats maintain circulation of henipavirus-
related viruses in several continents of the Old World.22 Two
sequences (KY227 and KY159b) identified in an R. aegyptiacus
bat and an O. martiensseni bat, respectively, were grouped
within the Rubulavirus genus (Figure 3C). KY227 was more
related to human parainfluenza virus 4b (HPIV4b; 85% nucleo-
tide identity), and KY159b from the O. martiensseni bat was
more related toGH1a from theEidolon helvum bat fromGhana
(65% nucleotide identity) based on partial L gene sequences.
We detected paramyxovirus RNA from three insectivorous
bat genera (Cardioderma, Chaerephon, andOtomops) that were
not previously reported to be carriers of paramyxoviruses.

CONCLUSION

We detected distinct viral DNA and RNA from the families
Adenoviridae, Rhabdoviridae, and Paramyxoviridae in Kenya
bats using generic family and/or genus RT-PCR and PCR
assays. Although the limited length of genome sequences
and the low Bayesian posterior probabilities do not provide
reliable phylogenetic comparisons and taxonomic inferences,
the magnitude of the genetic distance (85% or less nucleo-
tide identity in highly conserved genomic regions) between
the Kenya bat paramyxoviruses and rhabdoviruses from
this study and other known paramyxoviruses and rhabdo-
viruses might be suggestive of their being novel viral lineages
within their respective families. The Kenya bat adenoviruses
could not be confirmed as novel, because many bat adeno-
viruses have recently been described that are also related
to canine adenovirus types 1 and 2, and we were unable to
obtain sequences from the same region of the genome for
direct comparison.

Our findings also show that Kenya bats maintain as much
genetic diversity in paramyxoviruses as bats in other geo-
graphic locations. The concurrent detection of both RNA
and DNA viruses in apparently healthy bats supports evi-
dence that bats may be carriers of more than one virus. Of
note, many bats that tested positive for adenovirus, para-
myxovirus, and polyomavirus were O. martiensseni from
Suswa Cave. Suswa Cave houses one of the largest known
colonies of O. martiensseni and has an extensive history of
guano mining and tourist visits.23 Anthropogenic activities,
including guano mining, cave tourism, hunting, and consump-
tion of bats, likely increase the chance of zoonotic infection
spillovers from these bats.2 Studying viral diversity in bats and
their biology will help understanding and response to novel
emerging viruses.
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